Emotional Reminiscing and the Development of an Autobiographical Self

Amy Bird
Child and Adolescent Mental Health Service, Auckland District Health Board

Elaine Reese
University of Otago

According to autobiographical memory theorists, past event conversations provide children with a framework for evaluating and connecting past events into a coherent autobiography (R. Fivush, 1994; K. Nelson, 1993; M. K. Welch-Ross, 1995). Two studies were conducted to empirically examine the association between past event conversation style and an independent measure of children’s self-concept consistency. In Study 1, 50 New Zealand mothers discussed everyday past events with their children at 51 and 65 months of age. In Study 2, 51 New Zealand parents discussed 1 positive and 3 negative past events with their 5- and 6-year-old children. The consistency of children’s self-views was assessed in both studies using the Children’s Self-View Questionnaire (R. Eder, 1990). Children’s self-concept consistency was moderately associated with greater explanation of the causes and consequences of children’s negative emotions, resolution through social contact, and evaluation of positive events but not with simple attributions of emotion. These findings implicate parent–child conversations as a medium through which children can begin to understand the personal meaning of past experiences.

Keywords: autobiographical memory, emotion, self, parent–child conversations

Over the past two decades extensive research has established day-to-day parent–child past event conversations as an integral medium through which autobiographical memory develops. Research suggests that adults who discuss past events in an elaborate, as opposed to repetitive, style facilitate children’s independent event recall (e.g., Haden, Haine, & Fivush, 1997; McGuigan & Salmon, 2004; Peterson, Jesso, & McCabe, 1999). However, past event conversations do not occur simply for the sake of it (Miller, 1994). The events that children and their parents choose to discuss, as well as the specific aspects of the event highlighted, differ widely. The tale that each individual chooses to tell provides information not only about the event but also about one’s preferences, interests, abilities, and values: in essence, one’s self.¹

According to autobiographical memory theorists (e.g., Fivush, 1993, 2001; Nelson, 1993), not only do past event conversations communicate information about the self, they are actually integral in self-concept development. They argue that both autobiographical memories and a self-concept are constructed through the unique language of past event conversations. Specifically, conversations about past events are thought to communicate information about why certain experiences are important through the discussion of the evaluative and emotional aspects. When children understand why a particular experience is personally meaningful, they are then able to connect discrete past events into a coherent autobiography. This personal life history is thought to form the basis of a subjective self. For example, if a child learns to understand (through past event conversation) that acting in the school play, going out for dinner, visiting grandma, and playing hide-and-seek are fun experiences, that child can begin to connect these discrete experiences into an understanding of “what is fun” and, ultimately, “what I enjoy.” The more connections are made, the more consistent a child’s self-view becomes (Welch-Ross, 2001).

Of importance, a bidirectional relationship between autobiographical memory and self-concept is assumed (Nelson, 1993). The connection of discrete past events is thought to create a coherent sense of self, but this process may also be driven by our self-concept: Those events that are consistent with our self-views are more likely to be remembered. In support of this bidirectional relationship, both children’s event memory and their self-concept become based less on general memories and more on specific instances with age (Eder, 1989; Hudson, 1986).

The linguistic medium of parent–child past event conversations is thought to be particularly salient for self-development for several reasons. First and most important, language provides a medium for evaluation that communicates the personal meaning, or self-relevance, of an experience (Fivush, 1993). Second, through the use of personal pronouns, language provides a medium for children to represent the self versus others. Language in the past event context also allows children to compare their own representations of the event with another’s and hence identify “my” expe-

¹ The current research is based on a structuralist view of the “self” as a relatively fixed and enduring mental representation. In contrast, postmodern theorists (e.g., Brockmeier & Harre, 2001; Gergen & Gergen, 1997) argue for a self that exists within social interactions. According to this view, the self is constantly recreated within each new narrative.
rience as distinct from “yours” (Nelson, 2003). Third, the temporal component of past event conversations may allow children to better reflect on the emotional aspects because they are no longer experiencing them (Bretherton, Fritz, Zahn-Waxler, & Ridgeway, 1986; Dunn, Brown, & Beardsall, 1991) and hence develop a greater understanding of the event’s personal meaning (Fivush, 1989, 1993). Fourth, from a developmental perspective, parent-child conversations provide an opportunity for parents to “scaffold” their children’s understanding of how to interpret and cope with emotions (Dunn & Hughes, 1998; Fivush, 1993; Laible & Thompson, 2000; Rogoff, 1990).

Despite the theoretical attention devoted to relations between autobiographical memory and self-concept, few studies have empirically examined such an association from a developmental perspective (see Markus, 1977, and Neimeyer & Rareshide, 1991, for associations between memory and self in adults). As noted by Welch-Ross (2001), “a challenge of conducting research relating to this conceptual framework lies in operationalizing abstract constructs” (p. 104). The measurement of a child’s “subjective self” is especially challenging. There is relative agreement among investigators to date, however, that an autobiographical self is characterized by a view of the self as relatively enduring and stable across time and multiple contexts, regardless of the specific content of these traits (Buckner & Fivush, 1998; Welch-Ross, 2001; Welch-Ross, Fasig, & Farrar, 1999). Children who understand the personal meaning of past events and are able to connect these into a coherent history should also be able to connect their self-views across multiple contexts to provide a more coherent representation of their personal qualities (Welch-Ross et al., 1999). From this theoretical perspective, the outcome measurement of most interest is not how a child sees him- or herself, but how well.

To date only two studies have empirically examined autobiographical memory theory with an independent measure of self-concept. In both of these studies, researchers have used Eder’s (1990) Children’s Self-View Questionnaire (CSVQ). This scale allows for the assessment of self-concept from a young age by presenting children with forced-choice rather than open-ended questions. In this way, children’s ability to communicate their self-view is less impeded by their still developing language skills. The CSVQ also covers a broad range of dimensions that are thought to reflect underlying differences in emotionality (Eder & Mangelsdorf, 1997). Buckner and Fivush (1998) first addressed the empirical relationship between narrative memory and self by asking 7½-year-old children to recall a past event associated with each of the nine CSVQ dimensions. The consistency of children’s self-views for each of the nine CSVQ dimensions was measured (i.e., children with either all high or all low dimension scores were consistent, whereas children with a mixture of high and low scores were not). Surprisingly, Buckner and Fivush did not find a link between the consistency of children’s self-views for each of the nine dimensions and the emotional content and length of related narratives.

Taking a broader narrative approach, Welch-Ross et al. (1999) had mothers and their 3½- to 4½-year-old children discuss four past events designed to prompt for a range of emotion talk (visit to doctor or dentist, family outing, special occasion, separation from mother). They measured the organization of children’s self-views along the three higher order factors identified by Eder (1990). Results indicated that greater dyadic reference to children’s emotional (e.g., “I liked it”), but not mental (e.g., “I knew where to go”), states was associated with more organized self-views. Dyadic emotion references explained more than 10% of the variance in children’s CSVQ factor scores.

The last decade has seen several exciting advances for the autobiographical memory approach to self-concept development. Most notably, Welch-Ross et al.’s (1999) findings provide the first empirical support within a developmental framework for the much theorized relationship between narrative memory and self. Over the last few years, autobiographical memory theorists have also begun to make more specific predictions regarding the nature of the link between narrative and self. First, they have begun to consider whether certain evaluative narrative devices might be more important for the self than others. An individual can express his or her subjective perspective through a number of narrative means, such as the basic structure and “peak” of a narrative (Peterson & McCabe, 1983), terms that intensify or qualify (e.g., “it was really dark”), and terms that evaluate an external appearance or impression (e.g., “it was nice,” “it was fun”; Fivush & Haden, 1997). However, Fivush (2001) suggested that internal state talk might be particularly important for self-concept development:

[External evaluations] provide subjective texture to the narrative in the sense that they implicitly mark the narrator’s perspective, but it is the internal responses that fully mark the subjective perspective . . . this is why the event was funny, or painful, or interesting, or important. This is what makes the event meaningful to me, and why it is worth recounting to you. (p. 39)

Moreover, several recent studies conducted by autobiographical memory researchers suggest that parents and children discuss negative and positive events quite differently. These differences may have implications for self-concept development. For example, Fivush, Hazzard, Sales, Sarfatti, and Brown (2003) asked children between ages 5 and 12 growing up in violent neighborhoods to discuss a positive and negative experience. Of interest, they found that children talked about their thoughts and emotions more during negative events and that negative events were narrated more coherently. They concluded that, at least for children growing up in violent environments, greater personal meaning may be derived from negative, as opposed to positive, experiences. Similarly, Sales, Fivush, and Peterson (2003) compared parent–child conversations about negative (an emergency room visit) and positive past events. They found that parents were more elaborative when discussing the negative event. It is interesting to note that parents were more likely to seek an explanation for emotion in the negative event context. Ackil, van Abbema, and Bauer (2003) also found that mother–child conversations about a negative event (a tornado) were more coherent than conversations about positive events. These studies have not included an independent measure of self, and the generalizability of findings beyond traumatic events remains to be seen. However, they do suggest that conversations about negative experiences may be a particularly salient context through which children learn about the personal meaning of events and develop important coping skills.

In summary, Welch-Ross et al.’s (1999) findings provide important empirical evidence for the hypothesized link between narrative and self. Further research is needed to examine predictions based on recent advances in autobiographical memory re-
search. Do references to internal emotional states better facilitate a child’s understanding of the personal meaning of an event than do external evaluations (Fivush, 2001)? If so, we would expect this stronger understanding to be reflected in a more consistent self-concept. Do negative experiences hold particular importance for children’s developing self-views (Fivush et al., 2003; Sales et al., 2003)? The current research consists of two studies designed to address these questions empirically using an independent measure of self-concept. In the first study, we consider the evaluative and emotional content of children’s conversations with their mothers about everyday past events. In the second study, we examine parent–child past event conversations about specifically emotional events.

STUDY 1

In the first study we attempted to replicate Welch-Ross et al.’s (1999) finding of an empirical association between narrative and self. We also coded separately for internal and external evaluations and for positive and negative emotional states. In accordance with Fivush’s (2001) suggestion, we predicted that internal state talk would be more strongly associated with self-concept than external evaluations would be. On the basis of recent suggestions that negative events may hold particular personal meaning (Fivush et al., 2003; Sales et al., 2003), we also predicted that negative emotion talk would be more strongly associated with children’s self-concept development in these conversations about a wide range of everyday experiences.

Method

Participants

Participants were part of a longitudinal study of 65 mothers and children. Participants were initially recruited through advertisements and birth records. Data were collected when children were 19, 25, 32, 40, 51, and 65 months old.

The present study used data from the 51- and 65-month time points. Dyads were visited within 2 weeks of their 51-month (M = 51.1 months; SD = 10.7 days) and 65-month (M = 65.2 months; SD = 13.7 days) ages. Participants for the present study were the 50 children (25 boys and 25 girls) and their primary caregiver mothers who were present at all time points. Of the 15 children who did not complete the study, 11 moved to another city and 4 decided not to continue. English was the primary language spoken in all homes. With respect to ethnic origin, 44 children were of European descent, 5 children were of New Zealand Maori descent, and 1 child was of Asian descent. Eighteen were firstborn children. According to paternal occupation, families at the 19-month time point were of middle socioeconomic status (Elley & Irving, 1976). On average, mothers had 13 years of education, ranging from 2 years of education to 15 years of secondary to 5 years of tertiary education.

Procedure

At all time points, two experimenters (from a pool of 10 female experimenters and one male experimenter) visited dyads in their homes. The 51- and 65-month time points involved two sessions that were not usually more than 2 weeks apart. The primary experimenter was always female and interacted with the child, while the second experimenter interacted with the mother and controlled the video and audio procedures. Mothers provided informed consent at each time point. After the final session at each time point, children were presented with a small gift (e.g., a Frisbee and a keepsake video). The relevant tasks at both time points for the present study are shown in Table 1.²

<table>
<thead>
<tr>
<th>Time point</th>
<th>Tasks Used at Each Time Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>51 months</td>
<td>Mother–child past event conversations Child language measures (PPVT and EVT)</td>
</tr>
<tr>
<td>65 months</td>
<td>Child self-concept measure (CSVQ) Mother–child past event conversations Child language measures (PPVT and EVT)</td>
</tr>
</tbody>
</table>

Note. PPVT = Peabody Picture Vocabulary Test; EVT = Expressive Vocabulary Test; CSVQ = Children’s Self-View Questionnaire.

Language

At both 51 and 65 months, children’s receptive and expressive language was assessed using the Peabody Picture Vocabulary Test III (PPVT–III; Dunn & Dunn, 1997) and the Expressive Vocabulary Test (EVT; Williams, 1997), respectively. Both tasks are individually administered, have no time limits, and have good psychometric properties. For children at both time points, the PPVT was given in Session 1 and the EVT in Session 2. Version A of the PPVT–III was administered at 51 months, and Version B at 65 months.

Self-Concept

Eder’s (1990) CSVQ was used to measure children’s self-concept at 65 months. This scale was designed to assess self-concept in children between 3½ and 7½ years old. The 35 items that Eder found to be reliable for 5½-year-old children were used in the present study. Table 2 gives definitions for the nine dimensions of self concept by the CSVQ, as well as sample items. The items in the CSVQ were selected to reflect current research and theory on young children’s self-concept development. They describe general, typical behaviors or traits that are understood by most young children, and they are based on the content of children’s responses to open-ended questions (Eder, 1989, 1990). The CSVQ demonstrates good internal consistency and test–retest reliability (an average of .60 for 5½-year-olds) over a 1-month period (Eder, 1990).

CSVQ items were presented in a video of an interactive puppet show similar to that used by Kochanska, Murray, and Coy (1997) to measure children’s moral self. On video, a female experimenter interacted with two gender-neutral puppets in a puppet theater. The puppets endorsed opposite poles of the 35 items, and children were prompted to say which option was most like them. If children did not respond, the video was paused and the experimenter repeated the choice prompt “Which one is most like you?” If necessary, she again stated the opposite pole of the item and the choice prompt. The items were embedded in interactions between the puppets similar to those used by Kochanska et al. For instance, after the second item, the second puppet (Berella) looked at the first puppet (Arana) and said, “Hey, I’m having a lot of fun playing this game.” Arana answered, “Yeah—I’m too,” then looked directly into the camera and said, “You’re doing a super job!” Next Berella asked the female interviewer (Christie), “Are you having fun?” Then the puppets danced around the stage and gave Christie a high five before she administered Item 3.²

On the basis of autobiographical memory theory and research, the current study conceptualized the subjective self as the consistency of children’s self-views across multiple contexts. Consistency scores were

² In addition to the tasks selected for the current study, further data were collected at each time point, including immediate and delayed self-recognition (19–51 months), deferred imitation (19–40 months), attachment security (19 and 25 months), temperament (40 months), theory of mind (40 and 51 months), and emergent literacy (51 and 65 months).
calculated for each child for each of the nine CSVQ dimensions (adapted from Buckner & Fivush, 1998; Welch-Ross et al., 1999). Thus, a child who endorsed the high option for all items in a dimension and a child who endorsed all the low options were both viewed as having equally consistent self-views. Consistency scores for each dimension ranged from .5 (i.e., where the child endorsed the high option for half the items in a dimension and the low option for the other half) to 1.0 (i.e., where the child endorsed either the high or the low option for all items in a dimension). The consistency scores from each of the nine dimensions were then averaged to give an overall CSVQ consistency score ranging from .5 to 1.0 for each child.

Past Event Conversations

Past event conversations from the 51- and 65-month time points were examined in the present study. At 51 and 65 months, mothers were asked to select four significant events that their child had experienced since the last time point to avoid previously discussed events. Three of the events were shared (i.e., both the mother and the child were present) and one was unshared (i.e., the child but not the mother was present). Mothers were asked to avoid events that were routine or script-based (e.g., movies, restaurants), that had occurred that day, or that lasted more than one day (e.g., going on a weekend trip). The order of shared–unshared discussion was counterbalanced within and across sessions. Mothers were asked to discuss the events with their children as they normally would, for as long as they normally would. All past event conversations were recorded, and mothers and children wore lapel microphones to increase recording clarity.

Coding

All past event conversations were transcribed verbatim from the audiotapes. Gender and other identifying information (such as the name of the child or siblings) were removed from the transcripts. The transcripts were first coded for children’s memory elaborations (i.e., units of recall of unique information). They were then coded according to the narrative categories described below. Separate totals for each of these narrative codes were obtained for the mother and child, for both shared and unshared events, at both time points.

Emotion terms. On the basis of past research (e.g., Adams, Kuebli, Boyle, & Fivush, 1995; Fivush, 1989, 1993; Welch-Ross et al., 1999), transcripts were coded for references to the internal emotional states of the child or another person. Emotions could be either personal feelings (e.g., sad, scared, happy) or emotional behaviors (e.g., cried, laughed, kissed). Emotions were classed as either positive or negative, and the number of different emotion terms each partner referred to was noted. References to preferences (e.g., want) were initially coded separately. However, preliminary analyses revealed stronger associations for preferences with emotion talk than with cognitive talk, so preferences were included as emotion terms.

External evaluations. Whereas emotion terms reference an individual’s internal and personal emotional experience, we also wanted to consider the importance of evaluative language that was based more on an external judgment. On the basis of past research (e.g., Fivush, 1993), transcripts were coded for external evaluations of the child (e.g., “you looked pretty”) and other people (e.g., “he was nice”). External evaluations of the event (e.g., it was fun) were extremely rare (<0.04 per event for mothers and <0.02 per event for children across both time points) and so were not included in analyses.

Two raters coded 25% of the transcripts for each condition at both time points. Reliability estimates (kappas) were calculated separately for mother and child, for shared and unshared events at both time points. Kappa averages ranged from .89 to .98. One coder coded the remaining transcripts.

Results

Data Reduction

Means were substituted for the following missing data points: 1 child did not complete the CSVQ at 65 months, 5 children did not complete the PPVT at 51 months, 7 children did not complete the EVT at 51 months, and 1 child did not reach basal and 1 child did not complete the task for both the PPVT and EVT at 65 months. When substituting for missing data, mean substitution is viewed as a conservative option (Tabachnick & Fidell, 2000).

In accordance with Fivush’s position (e.g., Adams et al., 1995; Fivush, 1989), all emotion narrative variables were considered as frequencies, as opposed to proportions. Fivush has argued that references to emotion do not increase simply as a function of longer conversations, given that past event conversations are untimed and nondirective (i.e., dyads are not prompted to discuss emotion) using this paradigm.

Mothers’ and children’s narrative variables were averaged across shared and unshared events at 51 and 65 months.3 References indicated that narrative variables from shared and unshared events were correlated with one another (31% were significantly correlated across event types). Correlations between negative emotion variables from the two event types and CSVQ consistency produced identical patterns and significance levels except in one instance: Children’s references to negative emotions in shared events at 51 months were significantly negatively related to CSVQ consistency ($r = −.29, p < .05$), but for unshared events at 51 months they were nonsignificantly positively related to CSVQ consistency ($r = .21, n.s.$).
ences to another’s emotions were excluded from subsequent analyses as these were rarely mentioned. This resulted in four narrative variables for both mothers and children at each time point: references to the child’s positive and negative emotions, the number of different emotions, and external evaluations (evaluations of the child and others). Narrative variables were positively skewed, so logarithmic transformations were conducted and transformed variables used in all further correlational and regression analyses. Untransformed data were used for analyses of variance (ANOVAs), as these are typically more robust to skewness.

To ensure that main analyses were not confounded by conversation length, correlations were conducted between the average number of maternal and child conversation turns at each time point and CSVQ scores. No significant correlations were found (rs ranged from -.15 to .05, ns).

Past research (e.g., Harley & Reese, 1999; Reese, 2002) has identified language skill as a predictor of individual difference in narrative style. To examine the potential impact of language skill on main analyses, children’s language scores were correlated with variables of interest. Neither children’s receptive nor their expressive language scores at 51 or 65 months were correlated with CSVQ consistency scores (rs ranged from -.23 to -.08, ns). Correlations were then conducted between mothers’ and children’s 51-month narrative variables and children’s 51-month language scores, and between 65-month narrative variables and 65-month language. At 51 months, children’s PPVT scores were significantly correlated with children’s positive emotion references (r = .43, p < .01), mothers’ evaluations (r = .34, p < .05), children’s evaluations (r = .36, p < .05), and the number of different emotions used by children (r = .34, p < .05).

We next conducted one-way ANOVAs to examine gender differences in variables of interest (see Tables 3 and 4). Consistent with past research in which girls were shown to have more emotional past event conversations (e.g., Adams et al., 1995), 65-month-old girls were more likely than boys to refer to their own negative emotions, $F(1, 48) = 6.95$, $p < .05$, $\eta^2 = .13$ ($M = 0.14$, confidence interval [CI] = 0.06–0.22, $SD = 0.19$ for girls; $M = 0.03$, CI = 0.00–0.06, $SD = 0.08$ for boys), and made more external evaluations, $F(1, 48) = 3.89$, $p < .05$, $\eta^2 = .08$ ($M = 0.32$, CI = 0.12–0.52, $SD = 0.49$ for girls; $M = 0.11$, CI = 0.02–0.19, $SD = 0.20$ for boys). Note, neither children’s CSVQ consistency scores, their language scores, nor the maternal narrative variables varied as a function of child gender (all $ps > .33$).

Main Analyses

Zero-Order Correlations Between Emotion References and Self-Concept

Pearson correlation coefficients were conducted between emotion narrative variables and CSVQ consistency scores. It is interesting to note that neither children’s nor mothers’ references to the child’s positive emotions, number of different emotions, or event evaluations at either time point were significantly correlated with children’s CSVQ consistency at 65 months (rs ranged from −.26 to .14, ns). Significant correlations were found, however, between references to the child’s negative emotions and children’s CSVQ consistency scores.

Concurrent correlations. Concurrent relations between 65-month negative emotion references and 65-month CSVQ consistency scores were considered first. Children with less consistent self-concepts were more likely to refer to their own negative emotions ($r = -.46, p < .01$). Because girls referred to their own negative emotions more at 65 months, correlations involving this variable were conducted separately for girls and boys. These revealed that girls who referred to their own negative emotions more at 65 months, correlations involving this variable were conducted separately for girls and boys. These revealed that girls who referred to their own negative emotions more had less consistent self-concepts ($r = -.75, p < .01, n = 25$), but this relationship was not significant for boys ($r = -.09, ns, n = 25$). A Fisher z test revealed that the difference between these correlations was significant ($z = 2.93, p < .01$).

Given the unexpected pattern of negative correlations between references to the child’s negative emotions and self-concept consistency, we next considered whether the overall emotional valence in conversations was important. Positive emotion ratios (Fivush & Vasudeva, 2002) were calculated by dividing the number of positive emotion references by the total number of emotion

<table>
<thead>
<tr>
<th>Measure</th>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Peabody Picture Vocabulary Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51 months</td>
<td>104.08</td>
<td>12.26</td>
</tr>
<tr>
<td>65 months</td>
<td>107.08</td>
<td>10.23</td>
</tr>
<tr>
<td>Expressive Vocabulary Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51 months</td>
<td>105.08</td>
<td>13.51</td>
</tr>
<tr>
<td>65 months</td>
<td>104.25</td>
<td>11.82</td>
</tr>
<tr>
<td>CSVQ consistency: 65 months</td>
<td>.75</td>
<td>.07</td>
</tr>
</tbody>
</table>

Note. CI = confidence interval; CSVQ = Children’s Self-View Questionnaire.
references, for mothers and children. Therefore, a value of 1.0 indicated discussion of only positive emotions (for that event at that time point), a value of 0 indicated discussion of only negative emotions, and a value of .5 indicated equal discussion of positive and negative emotions. Pearson correlation coefficients were calculated between these ratios and children’s CSVQ consistency scores. Although the resulting sample was small for statistical power (ratios could not be calculated for participants who did not refer to any emotions at all), children who referred to a greater proportion of positive emotions at 65 months had more consistent self-concepts (r = .43, p < .05, n = 25). Mothers’ ratio of positive emotions at 65 months was not significantly related to children’s self-concept consistency (r = .10, ns, n = 35).

Longitudinal correlations. The longitudinal relationship between 51-month emotion references and 65-month CSVQ consistency scores was then examined, and a similar overall pattern emerged. Lower CSVQ scores were associated with greater maternal (r = −.31, p < .05) and child (r = −.32, p < .05) references to the child’s negative emotions at 51 months. Positive emotion ratios at 51 months were not significantly correlated with 65-month CSVQ scores for mothers (r = .24, ns, n = 25) or for children (r = .16, ns, n = 18).

Regression Analyses: Unique Prediction of Self-Concept Consistency From Narrative

Standard regression analyses were then performed to identify the unique narrative predictor(s) of children’s CSVQ scores. Specifically, we wanted to compare mothers’ and children’s narrative contributions, at both time points, in relation to self-concept consistency. Mothers’ and children’s references to negative emotions were significantly correlated at both 51 months (r = .81, p < .01) and 65 months (r = .46, p < .01). Mothers’ and children’s references to the child’s negative emotions at 51 and 65 months were entered at the same step as predictors of children’s 65-month CSVQ scores in a standard regression model (R² = .32, p < .01). Results revealed that only children’s concurrent references to their own negative emotions were uniquely predictive of self-concept consistency (B = −.26, CI = −0.33 to 0.10, SE B = 0.07, B = −.52, p < .01), with ps > .27 for all other variables.

Discussion

With the current study we aimed to replicate and extend past research examining the link between past event narrative style and self-concept consistency. The strongest pattern of associations was found for references to the child’s negative emotions. The direction of this relationship, however, was initially surprising: Greater references to children’s negative emotions were associated with lower consistency scores on the CSVQ. This link was strongest when the discussion of negative emotion occurred in the absence of positive emotion talk. This association was stronger for girls than for boys at 65 months when girls were also discussing negative emotions more fully than boys, but the same link was present at 51 months with both mothers’ and children’s negative emotion talk associated with lower self-concept consistency for children at 65 months. Correlations between narrative style and CSVQ consistency did not vary as a function of language. Of interest, regression analyses indicated that children’s emotion talk was a better predictor of self-concept consistency.

The current findings add to those of Welch-Ross et al. (1999) in providing empirical support for a relationship between past event narratives and self in a developmental context. However, the current results revealed a consistent pattern of concurrent and longitudinal negative correlations between references to negative emotions and self-concept consistency. Mothers’ and children’s references to the child’s negative emotions at both time points together explained nearly a third of the variance in children’s self-concept consistency scores.

Why might greater discussion of negative emotions be associated with a less consistent self-concept? We suggest that the context and way in which emotions are discussed are important. Results indicated that although the overall number of positive emotion references was not correlated with children’s self-concept consistency, children who referred to a greater proportion of positive emotions had more consistent self-concepts. It may be that these children were using positive emotions to resolve the negative emotions being discussed. Given the low frequency of emotion talk, we could not statistically examine the way in which negative emotions were discussed. However, a qualitative examination of
all instances of negative emotion talk provides further insight. Across both time points, only 18% of the negative emotions that were attributed to children were explained (i.e., discussing why the child experienced the emotion), and only 28% were resolved. Overall, then, negative emotions in the current study were generally attributed without being explained or resolved.

The type of events discussed may also provide further insight to the association between negative emotion talk and self. Ninety percent of the “everyday” events spontaneously selected by mothers in the current study were positive. In contrast, Welch-Ross et al. (1999) used a procedure that encouraged elaboration on negative emotions, whereas the current procedure, in which dyads were free to talk about any aspect of an event, did not. As a result, emotions were often attributed in this study without explanation or resolution. We suggest that it is this approach to negative emotion discussion, rather than negative emotion discussion itself, that is associated with children’s lower self-concept consistency scores.

STUDY 2

Past research (e.g., Fivush et al., 2003; Sales et al., 2003) and the findings from Study 1 indicated that further research is needed to examine how talk about past negative emotions is related to self-concept development. Because negative emotions were mentioned relatively infrequently in the context of everyday events, Fivush’s (1991) emotion event paradigm was adopted for Study 2 (e.g., Fivush, Brotman, Buckner, & Goodman, 2000; Peterson & Biggs, 2001). During this paradigm, dyads are asked to discuss a time the child felt angry, scared, sad, and happy. On the basis of preliminary findings from Study 1, we predicted that children with more consistent self-views would have past event conversations that explain and resolve negative emotions to a greater extent. Some resolutions were predicted to be more helpful than others for children’s self-concept consistency. For instance, resolutions that negate the child’s emotions were expected to be negatively related to self-concept consistency because they essentially negate the child’s autonomy, whereas all other types of resolutions were predicted to relate positively to children’s self-concept consistency.

Method

Participants

Participants were 51 children (28 boys and 23 girls) and their primary caregivers (50 mothers and 1 father). Children were aged between 63 and 81 months (\(M = 71.69, SD = 5.45 \)). Participants were recruited through local primary schools. Information letters were sent home with 5- and 6-year-old children, and interested parents replied with contact details. Nineteen of the participants were firstborn children. English was the primary language spoken in all homes. With respect to ethnic origin, 44 of the children were of European descent, 3 of Maori descent, 3 of Pacific Island descent, and 1 of Asian descent. According to paternal occupation, families were, on average, of middle socioeconomic status (Elley & Irving, 1976). On average, parents had 14 years of education, ranging from 3 years of secondary to 5 years of tertiary education.

Procedure

Parents and children attended one session at the university lasting approximately 1.5 hr. The same female experimenter saw all participants. Parents completed informed consent prior to the session. Past event conversations occurred at either the beginning or the end of the session. Parents then left the room to complete a family information form and two temperament questionnaires in a nearby room while the experimenter completed language and self measures with the child. For their participation children were given a small gift (e.g., a Frisbee and a ruler) and parents’ gasoline costs were reimbursed.

Language

Children’s receptive and expressive language was measured using the Test for Early Language Development, Third Edition (TELD–3; Hrsko & Hammill, 1999). The TELD–3 was designed as a measure of language comprehension and expression for individuals aged between 2 and 8 years. This measure is individually administered, has no time limits, and demonstrates good psychometric properties.

Self-Concept

The CSVQ was given in the same manner as in Study 1. Again, the measured variable of interest was children’s overall self-concept consistency.

Past Event Conversations

Parents and children were given four cards, each with a different emotion printed on it, and were asked to “discuss a specific time in the past event when [child’s name] has felt [angry, sad, scared, happy].” Past research suggests that parents and children may disagree on how a child feels about an event (particularly for scared and angry feelings; Levine, Stein, & Liwag, 1999), and therefore dyads were asked to select past events together. The cards were presented in the order to be discussed, and the order of negative emotions was counterbalanced. For ethical reasons, dyads were always asked to discuss the happy event last to ensure that conversations ended on a positive note. Dyads were instructed to discuss the events as they usually would, for as long as they normally would. Parents wore lapel microphones during conversations.

Coding

As in Study 1, past event conversations were transcribed from audiotapes verbatim, and identifying information was removed. Transcripts were coded in two passes. The first pass identified evaluations and emotion words. The second focused on the way in which emotions were discussed (i.e., the attribution, explanation, confirmation, and resolution of emotion). Separate codes were obtained for parents and children. All propositions were first identified as either event or emotion related; talk about related events, talk about emotions during the selection process, off-topic talk, and resolutions of secondary to 5 years of tertiary education.

Reliability coding for explanations and resolutions was conducted on 25% of negative emotion references for both event types at 51 and 65 months: Reliability estimates ranged between 82% and 90%. See Table 5 for a comprehensive description of resolution coding.

Two additional self measures were conducted during this period that are not included in the current analyses. Children were given a short break (e.g., a puzzle, a drawing) after each measure.

No further instructions were given regarding event choice. Given that shared and unshared event variables had similar patterns of association with self scores in Study 1, we did not prompt for these separately in Study 2.

Mothers were also asked to provide information regarding the date of the event, frequency and recency of discussion, and strength of the child’s emotion. This information was not strongly correlated with mother or child narrative variables (3% of correlations were significant).
fillers, and remember prompts were not coded (Reese, Haden, & Fivush, 1993). Repetitions of event or emotion talk were coded separately (Fivush, 1991).

Pass 1: Emotion references. Transcripts were coded for emotion words and evaluations in the same way as in Study 1 (Fivush, 1991; Laible & Thompson, 2000; Welch-Ross et al., 1999). Evaluations of the event (e.g., it was sad) were more frequent than in Study 1 and were included as emotion words because they imply an emotional state (i.e., it was sad [to us]).

Pass 2: Emotion exchanges. Based on Fivush (1991), emotion propositions were further coded into the following categories: (a) attributions—conversations were coded for the number of propositions that simply attributed an emotion without discussing the causes or consequences (e.g., “Were you scared?”); (b) explanations—conversations were coded for the number of propositions that explained the cause (e.g., what made the child scared) or consequence (e.g., what happened as a result of the emotion, or what the child did to deal with feelings); and (c) resolutions—negative emotion conversations were coded for resolutions. Through inspection of the transcripts, five types of resolution were identified: social, talking, positive, problem-focused, and negating (see Table 5). The vast majority of resolutions could be classified as one of these five types, but amiscellaneous category was created for those that could not. Note, a single emotion could be resolved in several ways (e.g., providing a social resolution and a problem-focused resolution), and hence dyads could receive multiple resolution codes for a single conversation. However, coding of specific resolutions was mutually exclusive: That is, each resolution could be coded as only one type. By definition, positive emotion events do not require resolution, and hence this coding category was applied only to negative emotion discussions.

Two raters coded 25% of the transcripts. Reliability estimates (kappas) were calculated separately for parent and child, for each of the four emotions. Kappa averages ranged from .80 to .94. One coder coded the remaining transcripts.

Results

Data Reduction

Two dyads did not discuss a sad event, and one dyad did not discuss a fearful event (all dyads discussed angry and happy events). Given the cross-sectional design of this study, analyses involving these variables were conducted on reduced samples rather than inserting averages to replace missing data.

As in Study 1, narrative variables were considered as frequencies rather than as a proportion of total talk. The current study examined both the way in which emotion was discussed (i.e., attributions, explanations, and resolutions) and the use of specific emotion terms. References to others’ emotions and repetitions were excluded from subsequent analyses because of low frequencies. Except where noted, analyses were conducted on variables averaged across the three negative emotion event conversations. Therefore, emotion event analyses were conducted using the following variables: (a) emotion exchange variables: parent and child attributions and explanations; dyadic social, positive, talking, problem-focused, negating, and overall resolutions; and (b) parent and child references to the child’s positive and negative emotions and the number of different emotions and evaluations (combined child and other evaluations). Many of the narrative variables were positively skewed and were transformed using logarithmic transformations. As in Study 1, untransformed data were used for ANOVAs, which are typically seen as more robust to skewness, and transformed data were used for correlational analyses (Tabachnick & Fidell, 2000).

Preliminary Analyses

Children’s mean standardized language score was 104.22 (SD = 12.96, range = 71–127). Descriptive statistics were also calculated for CSVQ consistency scores (M = .79, SD = .06, range = .61–.95). The scores obtained were comparable to those in Study 1 and in Welch-Ross et al. (1999). Descriptive statistics were also calculated for children’s and parents’ narrative variables for negative (see Tables 6 and 7) and positive (see Table 8) emotion event conversations.

Pearson correlation coefficients were calculated between children’s age and narrative variables and CSVQ scores. Few significant effects of age were found. Positive resolutions were more likely to occur with older children (r = .32, p < .05). Older children made more negative emotion attributions (r = .32, p < .05). Given the few significant correlations, age was not controlled for in subsequent analyses.

To ensure that main analyses were not confounded by conversation length, correlations were conducted between the average

<table>
<thead>
<tr>
<th>Resolution type</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social</td>
<td>Seeking social support, comfort, or assurance to reduce negative emotion</td>
<td>Having a hug with mom; going to the teacher for help</td>
</tr>
<tr>
<td>Talking</td>
<td>Reducing the negative emotion by talking it through</td>
<td>Talking to someone about a death</td>
</tr>
<tr>
<td>Positive</td>
<td>Highlighting the positive aspect of an experience to reduce the negative emotion</td>
<td>Emphasizing that the child likes his or her new teacher to resolve sadness over the old teacher leaving</td>
</tr>
<tr>
<td>Problem focused</td>
<td>Attempting to change whatever caused the negative emotion</td>
<td>Getting a night-light or leaving the door open when the child is scared of the dark</td>
</tr>
<tr>
<td>Negating</td>
<td>Negating the cause of the negative emotion</td>
<td>Telling the child there is no such thing as ghosts or robbers</td>
</tr>
</tbody>
</table>
number of parental and child conversation turns for negative emotion conversations and CSVQ scores and age. No significant correlations were found (rs ranged from .07 to .17, ns).

To ensure that main analyses were not confounded by children’s language ability, children’s receptive, expressive, and total language standard scores were correlated with parents’ and children’s narrative variables. Twenty-two percent of parents’ and 33% of children’s language–narrative correlations were significantly, albeit weakly, positively correlated for negative event conversations (rs across all variables ranged from .15 to .30). None of the dyadic narrative variables (resolutions or number of different emotions) or narrative variables from the positive event conversations were significantly correlated with children’s language scores (rs ranged from -.07 to .07). Children’s CSVQ consistency scores were not significantly correlated with language (r = .02, ns). Children’s total language was controlled for in subsequent analyses when significantly correlated with one or more of the variables in the analysis.

One-way ANOVAs were then conducted to examine gender differences in variables of interest. Children’s language and CSVQ scores did not differ as a function of child gender (ps > .55). There were no gender differences in emotion attribution, explanation or resolution, or average conversation length (ps > .26). Parents used more negative emotion words overall with sons than with daughters, F(1, 46) = 3.98, p = .05, ƞ² = .08 (see Table 6). When emotion event conversations were considered separately, it was apparent that gender differences were strongest in the anger conversations. Parent–son dyads had longer conversations about anger, F(1, 49) = 5.76, p < .05, ƞ² = .10 (M = 7.0, CI = 5.05–8.94, SD = 5.02 for parent–son dyads; M = 4.35, CI = 3.55–5.15, SD = 1.85 for parent–daughter dyads). Parents were more likely to explain their sons’ than their daughters’ anger, F(1, 49) = 4.89, ƞ² = .06 (M = 5.12, CI = 2.79–6.42, SD = 2.15 with boys; M = 2.56, CI = 1.48–3.65, SD = 2.52 with girls). Parents were also marginally more likely to refer to negative emotion words when discussing anger with sons than with daughters, F(1, 49) = 3.48, ƞ² = .08, (M = 6.49, CI = 2.96–5.82, SD = 3.68 with boys; M = 2.83, CI = 1.90–3.75, SD = 2.14 with girls) and a wider range of emotions with sons than with daughters, F(1, 49) = 3.25, ƞ² = .08, (M = 5.60, CI = 1.61–3.46, SD = 2.38 with boys; M = 1.52, CI = 0.87–2.17, SD = 1.50 with girls).

These gender differences are similar to those found in past research with U.S. samples (e.g., Fivush, 1991). Unexpectedly, parents were also more likely to make emotion attributions when discussing fearful events with their sons, F(1, 49) = 5.88, p < .05, ƞ² = .11 (M = 1.04, CI = 0.55–1.52, SD = 1.22 with boys; M = 0.35, CI = 0.07–0.63, SD = 0.65 with girls).

Main Analyses

Negative Emotion Events and Self-Concept

Main analyses were then conducted. Negative emotion event conversations were addressed first. On the basis of the findings from Study 1, we predicted that children with more consistent self-views would experience past event conversations that explained and resolved negative emotions to a greater extent than children with less consistent self-views. Pearson correlation coefficients were therefore conducted between parental and child narrative variables and CSVQ consistency scores. As predicted, greater parental explanation of negative emotion was associated with higher CSVQ consistency (r = .30, p < .05). Children’s explanation of negative emotion was marginally associated with higher CSVQ consistency (r = .26, p < .10), whereas emotion attributions were unrelated to CSVQ scores (r = .01 and .13, respectively, for parents and children). We considered whether the explanation of certain emotions was particularly relevant for self-concept consistency. Parental explanation in the fear conversations was not associated with higher CSVQ consistency (r = .06, ns), but higher CSVQ consistency scores were associated with greater

Table 6

Descriptive Statistics for Negative Event Narrative Variables (Untransformed Totals Per Event) in Study 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Parents of sons</th>
<th></th>
<th></th>
<th>Parents of daughters</th>
<th></th>
<th></th>
<th>Sons</th>
<th></th>
<th>Daughters</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>CI</td>
<td>M</td>
<td>SD</td>
<td>CI</td>
<td>M</td>
<td>SD</td>
<td>CI</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Emotion attributions</td>
<td>0.79</td>
<td>0.66</td>
<td>0.53–1.06</td>
<td>0.79</td>
<td>0.58</td>
<td>0.53–1.04</td>
<td>0.36</td>
<td>0.40</td>
<td>0.20–0.52</td>
<td>0.45</td>
<td>0.53</td>
</tr>
<tr>
<td>Emotion explanations</td>
<td>3.85</td>
<td>2.42</td>
<td>2.87–4.82</td>
<td>3.08</td>
<td>2.19</td>
<td>2.11–4.04</td>
<td>1.49</td>
<td>1.33</td>
<td>0.95–2.02</td>
<td>1.41</td>
<td>1.15</td>
</tr>
<tr>
<td>Evaluations and emotion words</td>
<td></td>
</tr>
<tr>
<td>Child’s positive emotions</td>
<td>0.86</td>
<td>0.92</td>
<td>0.49–1.23</td>
<td>0.79</td>
<td>0.58</td>
<td>0.54–1.43</td>
<td>0.24</td>
<td>0.37</td>
<td>0.09–0.39</td>
<td>0.30</td>
<td>0.40</td>
</tr>
<tr>
<td>Child’s negative emotions</td>
<td>3.95</td>
<td>2.21</td>
<td>3.06–4.84</td>
<td>3.08</td>
<td>2.19</td>
<td>2.30–3.46</td>
<td>0.97</td>
<td>1.05</td>
<td>0.55–1.40</td>
<td>0.83</td>
<td>0.75</td>
</tr>
<tr>
<td>Number of different emotions</td>
<td>2.09</td>
<td>1.34</td>
<td>1.55–2.63</td>
<td>1.79</td>
<td>1.34</td>
<td>1.19–2.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(dyadic)</td>
<td>0.11</td>
<td>0.23</td>
<td>0.02–0.21</td>
<td>0.15</td>
<td>0.39</td>
<td>−0.02–0.33</td>
<td>0.09</td>
<td>0.29</td>
<td>−0.03–0.21</td>
<td>0.04</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Note. CI = confidence interval.
parental emotion explanation in the sad (r = .32, p < .05) and angry (r = .28, p < .05) discussions. Thus, the significant correlation between negative emotion explanation and self-concept is not due to just one of the three negative emotions.

We then conducted exploratory analyses to assess whether children’s CSVQ consistency scores correlated with different types of resolutions. Greater social resolution correlated significantly with higher CSVQ consistency scores (r = .32, p < .05). No other type of resolution was significantly correlated with CSVQ consistency (rs ranged from −.08 for negating resolutions to .19 for problem-solving resolutions, ns).

Correlations between emotion references and CSVQ scores were then conducted. No significant correlations were found between emotion references per se and CSVQ scores (r = .20, ns, for parents’ total emotion references and r = .13, ns, for children’s total emotion references). Positive emotion ratios were also calculated in accordance with Study 1. Results indicated that children who referred to proportionately more positive (as opposed to negative) emotion words had higher CSVQ consistency scores (r = .32, p < .05). These findings are in line with those relating CSVQ scores and resolution and with the findings from Study 1 where everyday events were discussed. Parents’ and children’s evaluations were not significantly correlated with CSVQ consistency (rs = .01, ns).

Positive Emotion Events and Self-Concept

To address the prediction that the discussion of negative emotion events is an especially salient context for self-evaluation, correlations were conducted between self-concept measures and narrative variables from the happy event conversations. Children’s evaluations in the positive event context were significantly associated with their CSVQ consistency scores (r = .28, p < .05). No other significant narrative-self correlations were found in the positive event conversation (rs ranged from −.22 to .20, ns). In particular, and in contrast to the negative event context, neither maternal nor child explanations of positive emotions were significantly correlated with CSVQ scores (rs = .10 and .20, ns, respectively). It is interesting to note that dyads did not appear to adopt completely different conversational styles in the two contexts: The degree to which both mothers (r = .38, p < .01) and children (r = .42, p < .01) explained emotions was moderately correlated across positive and negative conversations. Yet this “explanatory style” was significantly correlated with self-concept consistency only in the negative event context. These findings suggest that whereas an external evaluation might be sufficient to understand the personal meaning of a positive event, more detailed explanations might be required for negative events.

Unique Prediction of Self-Concept Consistency

Because variables from both positive and negative event conversations were associated with children’s self-concept consistency, the next step was to examine the unique and overlapping predictive power of positive and negative event discussions. We conducted two standard regressions predicting children’s self-concept consistency. In the first regression, we entered dyadic social resolutions of negative events and children’s external evaluations of positive events as predictors. The resulting R^2 value of .15 was significant, $F(2, 45) = 4.07, p < .05$. Both variables contributed only marginally to self-concept consistency ($F = 0.24, \text{CI} = -0.01–0.14, SE B = 0.04, \beta = 0.24, p = .07$, for children’s evaluations; $B = 0.04, CI = 0.00–0.07, SE B = 0.02, \beta = 0.27, p = .06$, for social resolutions). In the second regression we entered parents’ emotional explanations for negative events and children’s external evaluations for positive events. The resulting R^2 value of .16 was significant, $F(2, 45) = 4.28, p < .05$. Both variables contributed uniquely to self-concept consistency ($F = 0.08, \text{CI} = 0.00–0.16, SE B = 0.04, \beta = 0.29, p < .05$, for children’s evaluations; $B = 0.03, CI = 0.00–0.06, SE B = 0.02, \beta = 0.28, p < .05$, for mothers’ explanations).

Discussion

As predicted, the current study revealed that greater maternal explanation of negative emotion was associated with greater self-concept consistency in children. In addition, resolution of negative emotions through social contact and children’s external evaluations of positive events were also associated with self-concept consistency. Overall these results provide a clear pattern whereby the explanation and resolution, but not simple attribution, of negative emotion were associated with a more consistent self-view. These differences are demonstrated in the following excerpts in which two dyads from Study 2 discuss sad events. Note that whereas Child A obtained a relatively low CSVQ consistency score, Child B obtained a high CSVQ score.
Dyad A (child’s CSVQ consistency score = .71):

Mother: Now let me ask you what’s made you really sad?
Child: ... references to their own negative emotions that were uniquely predictive of self-concept consistency found across both studies? We suggest that explaining and resolving, as opposed to just attributing, a negative emotion better highlights the personal meaning of events. For example, a child who is told that he or she was scared of the dark may internalize the information “I am scared of the dark” as part of his or her self-view. However, a child whose fear of the dark is explained and resolved is learning a more general message about the causes and consequences of fear. A child who understands why he or she was scared may be better able to independently apply this emotion to situations other than the dark and, hence, may be better able to connect behaviors and events on the basis of the emotion experienced into a coherent life history.

Furthermore, the current findings suggest that the evaluative framework for past positive events is also important. Specifically, Study 2 found that children’s greater external evaluation of positive events was associated with higher self-concept consistency but that neither parents’ nor children’s explanation of positive emotion states was related to children’s self-concept. It may be that when discussing positive experiences, external evaluations of the event are sufficient to communicate the event’s personal meaning and allow for similarities to be drawn between this event and others like it. In contrast, in order for children to understand the personal meaning of a negative experience and integrate this event into a coherent autobiographical, a more in-depth discussion of the causes and consequences of emotion, and method of resolution, is needed. Even for adults, negative events can be inherently difficult to understand. We often struggle to find the meaning in seemingly random and hurtful experiences that are unfortunately an inevitable part of life. The framework for understanding and coping with such experiences, and integrating them into our views of ourselves, may be built in early parent–child conversations. These findings concur with past research suggesting that negative experiences may hold particular personal meaning (Ackil et al., 2003; Fivush et al., 2003; Sales et al., 2003). The inclusion of an independent measure of self allows the current findings to be interpreted within an autobiographical framework. We speculate that when negative events are explained and resolved socially, children may be better able to understand their personal meaning and, hence, connect discrete events across time into a consistent autobiography.

The differentiation of maternal and child talk allowed us to examine their relative association with self-concept development. Across past and current research, interesting differences emerge. Welch-Ross et al. (1999) found that mothers initiated more emotion talk than their 3½- 4½-year-old children. Yet recall that when everyday, predominantly positive events were discussed in Study 1, it was children’s concurrent references to their own negative emotions that were uniquely predictive of self-concept consis-
teny, not mothers’. In the positive event conversations in Study 2, again it was children’s emotion talk (in this case, external evaluations) that predicted self-concept consistency. In contrast, it was parents’ emotion explanations during the negative event discussions in Study 2 that were correlated with children’s self-concept consistency. Together, these findings suggest that parents may be required to provide greater scaffolding of narrative style, and hence the framework for children’s self-evaluation, when children are younger (as in Welch-Ross et al.) and when the events discussed are more negative and traumatic (as in Study 2).

Another consistent finding across both studies was the presence of gender differences in the way past events were discussed, although no gender differences were evident in children’s self-concept consistency. The girls in Study 1 discussed the negative aspects of everyday events in more detail than did the boys by 65 months. In Study 2, parents and sons discussed and explained past anger, and to some extent fear, in more depth than did parents and daughters. These findings are generally in line with past research demonstrating that gender differences in emotion narratives strengthen with development (e.g., Kuebli, Butler, & Fivush, 1995) and that parents are more elaborative when discussing anger with sons than with daughters (Fivush, 1989). The link between these gender differences in narrative and children’s self-concept consistency, which was only found in Study 1 at the last data point, needs to be replicated further.

Although the current conclusions are based on a consistent pattern present across two independent samples, replication and further research is needed. In particular, given the relatively large number of narrative variables and correlations conducted, one cannot exclude the possibility of Type I errors. Although the narrative variables accounted for a significant portion of the variation in children’s self-concept consistency (e.g., over 30% in Study 1), there is still a sizable amount of variance left to explain in children’s self-concept consistency. Clearly, self-concept is multiply determined by a number of sources; we measured only one narrative context for children with a single interactant. Moreover, we did not examine how past event narrative style indexes other underlying influences on the self. Attachment security has been theoretically and empirically associated with both narrative memory (e.g., Newcombe & Reese, 2004) and self-concept (e.g., Bowlby, 1988; Cassidy, 1988). In the current sample, self-concept consistency was associated only with a specific type of resolution through social contact. Attachment security may underlie this relationship. It makes conceptual sense that dyads with securely attached children would resolve negative emotions through social contact, whereas dyads with insecurely attached children in which children lack a secure base might be less likely to do so. Research suggests that securely attached children display more socially competent behaviors and are more likely to be accepted by their peers (Bohlin, Hagekull, & Rydell, 2000). Alternatively, however, securely attached children may require explicit social contact to a lesser degree following negative experiences because their more helpful internal working models allow for internal processing. Further research is needed examining the potentially complex relationship between attachment, narrative, and self-concept during early childhood.9

Research is also needed to further examine the nature of the relationship between narrative memory and self. Findings from the current study suggest that talk about both positive and negative past emotions is associated with a more consistently structured self-concept. Further research is needed to determine whether children also internalize specific content from parent–child conversations into their self-views and whether this is specific to the past event context. It would also be interesting to examine other narrative contexts that may have stronger self relevance, for example, parent–child conversations about past events associated with emotions such as jealousy, embarrassment, envy, guilt, and shame. Finally, the generalizability of these findings beyond predominantly White, Western samples remains to be seen. Cross-cultural research suggests that mothers and children in collectivist cultures (e.g., East Asia) are more likely to highlight the moral aspects and social context of past events (Wang, 2001; Wang & Leichtman, 2000). These differences in past event conversation may have important implications for the autobiographical self. For example, Mullen and Yi (1995) suggested that children in collectivist cultures have less need for a detailed autobiography or personal life history, because their sense of self is derived from their group role.

In conclusion, although the autobiographical memory approach to self-concept development has a solid theoretical basis, the empirical link between early past event narratives and independent measures of self is only beginning to be established. Together with recent research within the autobiographical memory field (Fivush et al., 2003; Sales et al., 2003), the current findings suggest past event conversations are an important medium through which children may develop and express self-understanding. Specifically, the current findings indicate that children tend to use external evaluations to understand the personal meaning of positive events, whereas a more in-depth discussion of the causes, consequences, and potential solutions is required to understand negative experiences. These findings may ultimately have implications for helping parents to discuss negative experiences with their children.

References

Brockmeier, J., & Harre, R. (2001). Narrative: Problems and promises of an alternative paradigm. In J. Brockmeier & D. Carbaugh (Eds.), Nar-

9 Attachment security was measured in Study 1. Although it was significantly correlated with some narrative variables, it was unrelated to CSVQ consistency scores. However, attachment security was not assessed in Study 2, and thus its potential as a confounding variable in this more emotional context could not be examined.

Instructions to Authors

For Instructions to Authors, please consult the January 2006 issue of the volume or visit www.apa.org/journals/dev and click on the “Instructions to authors” link in the Journal Info box on the right.